Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Nachrichten Wissenschaft Kosmische "Ausgrabung" findet Reste der Grundbausteine der Milchstraße

Kosmische "Ausgrabung" findet Reste der Grundbausteine der Milchstraße

Archivmeldung vom 26.11.2009

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 26.11.2009 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Thorsten Schmitt
Der Sternhaufen Terzan 5 Bild: ESO/F. Ferraro
Der Sternhaufen Terzan 5 Bild: ESO/F. Ferraro

Durch die dicken Staubwolken der Zentralregion (des so genannten "Bulge") unserer Milchstraße hindurch hat eine Gruppe von Astronomen detaillierte Beobachtungen des Kugelsternhaufens Terzan 5 vorgenommen und nachgewiesen, dass dieser Sternhaufen eine höchst ungewöhnliche Zusammensetzung aufweist. Ein Haufen mit diesem besonderen "Mix" an Sternen ist im Bulge noch nie zuvor beobachtet worden, und die Daten legen nahe, dass Terzan 5 einer der ursprünglichen Bausteine des Bulge sein dürfte. Wahrscheinlich handelt es sich um den Überrest einer Zwerggalaxie, die vor langer Zeit mit der Milchstraße verschmolzen ist.

"Die Geschichte der Milchstraße lässt sich anhand ihrer ältesten Bestandteile nachvollziehen - das sind so genannte Kugelhaufen und andere Ansammlungen von Sternen, die die gesamte Entwicklung unserer Heimatgalaxie miterlebt haben", so Francesco Ferraro, der Erstautor des Fachartikels in der Zeitschrift Nature, in dem die neuen Ergebnisse diese Woche veröffentlicht werden. "Unsere Untersuchung gibt nun den Blick auf einen weiteren Zeugen unserer galaktischen Vergangenheit frei."

Wie Archäologen, die Spuren längst vergangener Zivilisationen ausgraben, haben die Astronomen hinter den Staubschichten, die den Bulge unserer Milchstraße verdecken, ein überraschendes kosmisches Relikt freigelegt.

Ziel ihrer Beobachtungen war der Kugelsternhaufen Terzan 5. In den allermeisten Kugelsternhaufen sind die Sternen im wesentlichen zu ein und derselben Zeit entstanden (Astronomen sprechen davon, alle Sterne eines Kugelsternhaufens gehörten zu ein und derselben "Population"). Die Sterne, die Terzan 5 bevölkern, sind dagegen in mindestens zwei Schüben entstanden: eine ältere Population von Sternen vor rund 12 Milliarden Jahren, eine jüngere vor 6 Milliarden Jahren.

"Bislang kennen wir in unserer Milchstraße nur einen einzigen Kugelhaufen mit einer so komplexen Entstehungsgeschichte: Omega Centauri", so Emanuele Dalessandro, einer der beteiligten Forscher. Omega Centauri findet sich allerdings in den Außenbereichen unserer Galaxie, im so genannten Halo - der nun gefundene Haufen dagegen im Bulge, also in der Zentralregion: "Dies ist das erste Mal, dass wir so etwas im Bulge beobachten", so Dalessandro weiter.

Für astronomische Beobachtungen bietet der Bulge unserer Galaxie denkbar ungünstige Bedingungen. Von der Erde aus gesehen liegt er hinter dichten Staubwolken, hinter denen sich seine Sternenvielfalt nur mit Hilfe von Infrarotlicht beobachten lässt. Koautorin Barbara Lanzoni: "Nur den leistungsfähigen Instrumente am Very Large Telescope (VLT) der ESO ist es zu verdanken, dass wir nun im wahrsten Sinne des Wortes durchblicken - und damit neue Erkenntnisse über die Herkunft des galaktischen Bulge gewinnen konnten."

Hintergrund der erfolgreichen Beobachtungen ist ein technisches Meisterstück: der "Multi-conjugate Adaptive Optics Demonstrator" (MAD, wörtlich das "Demonstrationsexperiment für multikonjugierte Adaptive Optik"), mit dessen Hilfe das VLT im Infrarotbereich exquisit scharfe Bilder aufnehmen kann. Adaptive Optik ist eine Technik, mit deren Hilfe die Astronomen die Störungen, die sich bei Beobachtungen mit erdgebundenen Teleskopen aufgrund von Turbulenzen in der Erdatmosphäre bemerkbar machen, weitgehend ausschalten können. MAD ist ein Prototyp für eine neue Generation adaptiver Optik, die deutlich leistungsfähiger sein wird als heute übliche Systeme [1].

Die VLT-Beobachtungen haben auch gezeigt, dass Terzan 5 mehr Masse besitzt als bislang angenommen. Dies und die ungewöhnliche Zusammensetzung des Sternhaufens sind Anzeichen dafür, dass Terzan 5 Überbleibsel einer Zwerggalaxie ist, die mit der damals noch jungen Milchstraße verschmolzen ist und so zur Ausbildung des Bulge unserer Heimatgalaxie beigetragen hat.

"Dies könnte die erste in einer Reihe von Entdeckungen sein, durch die wir die Entstehung der Bulges von Galaxien verstehen lernen - hier gibt es derzeit noch viele offene Fragen", schließt Ferraro. "Hinter dem Staub könnten sich noch weitere Objekte dieser Art verbergen, die uns Aufschluß über die Geschichte unserer Milchstraße geben."

[1] Beobachtungen durch bodengebundene Teleskope werden durch turbulente Luftströmungen in der Atmosphäre empfindlich gestört. Diese Turbulenzen sind für das romantische Funkeln der Sterne verantwortlich - den Astronomen verderben sie in ganz unromantischer Weise die Arbeit, denn feine Details astronomischer Abbildungen werden durch sie unwiederbringlich verwischt. Mit Hilfe der Adaptiven Optik (AO) lassen sich diese Störungen weitgehend ausgleichen, so dass auch erdgebundene Teleskope so detailreiche Bilder produzieren können wie sonst nur Weltraumteleskope, also Teleskope, die sich außerhalb der Erdatmosphäre befinden. Kernstück eines AO-Systems ist ein verformbarer Spiegel, mit dessen Hilfe die durch die atmosphärischen Turbulenzen verursachten Bildverzerrungen ausgeglichen werden. Gesteuert werden die Verformungen des Spiegels durch ein Computersystem, das laufend Daten eines so genannten Wellenfrontsensors auswertet. Dieser Sensor überwacht das Bild eines Referenzsterns: er misst, wie die atmosphärischen Störungen das Bild des Referenzsterns verzerren, und einige hundert Male pro Sekunde wird aus diesen Messdaten berechnet, wie der Spiegel verformt werden muss, um die beobachteten Verzerrungen auszugleichen. Bei herkömmlichen AO-Systemen darf das zu beobachtende Objekt allerdings nicht weit von dem Referenzstern entfernt sein - typischerweise 15 Bogensekunden oder weniger; andernfalls misslingt der Ausgleich. Multikonjugierte Optik wurde entwickelt, um diese Beschränkungen zu überwinden: MAD beobachtet statt eines einzigen gleich drei Referenzsterne; so ist es möglich, die atmosphärischen Störungen in einem rund dreißig Mal größeren Himmelsbereich auszugleichen als mit nur mit einem einzigen Referenzstern.

Quelle: Max-Planck-Institut für Astronomie

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte mimik in folgendes Feld um den Spam-Filter zu umgehen

Anzeige