Neue Technik macht Durchleuchten einfacher
Archivmeldung vom 12.01.2011
Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 12.01.2011 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.
Freigeschaltet durch Manuel SchmidtPhysiker der Philipps-Universität haben gezeigt, wie sich Terahertz-Wellen mit bisher unerreichter Leistung bei Raumtemperatur erzeugen lassen. Die Wissenschaftler verwendeten hierfür einen nichtlinearen Kristall, der Terahertz-Wellen abstrahlt, wenn er mit verschiedenfarbigem Laserlicht großer Intensität angeregt wird. Die Ergebnisse sind im Online-Fachmagazin „Optics Express“ nachzulesen.
Terahertz (THz)-Wellen stehen in jüngster Zeit häufig im öffentlichen Interesse, etwa im Kontext von Körperscannern und dem Aufspüren von Sprengstoffen. THz-Strahlen durchdringen Kunststoffe, Verbundmaterialien und viele Lebensmittel, so dass sie Strukturen aufdecken können, die für sichtbares Licht verborgen bleiben; daher eignen sie sich auch hervorragend zur Überwachung industrieller Prozesse und zur Qualitätskontrolle. Der praktischen Anwendbarkeit stehen jedoch technische Probleme entgegen: So war es bisher nicht möglich, mit kompakten Geräten bei Raumtemperatur hohe Leistungen besonders im Frequenzbereich von ein bis fünf THz zu erzeugen. "Leistungsstarke THz-Quellen müssen auf Temperaturen von wenigen Kelvin abgekühlt werden", erläutert Professor Dr. Stephan Koch von der Philipps-Universität, der die Idee für das jetzt mitgeteilte Experiment hatte.
Zusammen mit seinen Marburger Kollegen Professor Dr. Martin Koch und Maik Scheller sowie mit der Arbeitsgruppe des Humboldt-Preisträgers Professor Jerome V. Moloney von der University of Arizona ist nun ein technischer Durchbruch gelungen. Die Forscher nutzen sogenannte Halbleiter-Scheibenlaser (englisch „vertical external cavity surface emitting laser“, kurz VECSEL), um zwei scharfe Laserlinien zu erzeugen. Innerhalb der Laserkavität, in der Intensitäten vorherrschen wie sonst nur innerhalb eines Laserstrahles mit Kilowatt-Durchschnittsleitung, platzierten sie einen nichtlinearen Kristall, der über einen Differenz-Frequenz-Erzeugungsprozess THz-Wellen emittiert. „Die hohen Lichtintensitäten ermöglichen hierbei THz-Leistungen im Bereich mehrerer Milliwatt“, berichtet Ko-Autor Martin Koch – „bisher unerreichbare Werte für Terahertz-Emitter, die bei Raumtemperatur arbeiten!“ Durch die freie Wahl des Abstandes der beiden Laserlinien ist eine beliebige Abstimmbarkeit der THz-Frequenz möglich.
„Unsere THz-Quelle basiert auf einem ähnlichen Prinzip wie ein grüner Laserpointer“, erklärt der wissenschaftliche Mitarbeiter Maik Scheller, der die Forschungsarbeiten maßgeblich durchführte: „Indem die Frequenzmischung innerhalb der Laserkavität vonstatten geht, resultiert eine enorme Effizienz.“ Somit können auf einfache Weise THz-Wellen mit hohen Leistungen generiert werden. „Unser Ansatz arbeitet bei Raumtemperatur und bedarf keiner aufwändigen Kühlungstechnik", ergänzt Stephan Koch.
In dem Fachartikel wird gezeigt, dass die neuartige Quelle nicht nur hohe Leistungswerte aufweist, sondern auch ein ausgezeichnetes räumliches Abstrahlungsprofil. Somit eignet sich diese ideal für Anwendungen, bei denen hohe Leistungen in THz-Wellenleiter eingekoppelt werden müssen. Aber auch das Feld der Radioastronomie könne von diesem Ansatz profitieren, meinen die Autoren.
Quelle: Philipps-Universität Marburg