Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Nachrichten Natur/Umwelt Temperatur-Gedächtnis der Pflanzen dauert sechs Wochen

Temperatur-Gedächtnis der Pflanzen dauert sechs Wochen

Archivmeldung vom 08.06.2010

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 08.06.2010 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Thorsten Schmitt
Blüten der Hallerschen Schaumkresse und ein bestäubendes Insekt Shinichiro Aikawa
Blüten der Hallerschen Schaumkresse und ein bestäubendes Insekt Shinichiro Aikawa

Der Klimawandel hat bei einigen Pflanzenarten die Blütezeit verschoben. Dadurch ist die Koordination mit Bestäubern wie saisonal auftretenden Insekten gestört. Der Pflanzenbiologe Prof. Kentaro Shimizu von der Universität Zürich und seine japanischen Kollegen konnten nun zeigen, dass ein für die Blütezeit verantwortliches Gen als Gedächtnis fungiert. Dieses Gen registriert die Temperatur der letzten sechs Wochen und beeinflusst die pflanzliche Entwicklung entsprechend. Diese Erkenntnis ermöglicht es, das Blühverhalten der Pflanzen zu modellieren und mögliche Konsequenzen des Klimawandels auf pflanzliche Ökosysteme vorauszusagen.

Viele Pflanzen blühen im Frühjahr, da sie die längere Kälteperiode des vorangegangenen Winters erkennen können. Dabei müssen Pflanzen unempfindlich sein gegenüber kurzfristig schwankenden Temperaturen, wie sie aufgrund des Tag-Nacht-Rhythmus oder von Wetterveränderungen über mehrere Tage respektive Wochen auftreten. Diese Temperaturschwankungen sind oft dem saisonalen Trend entgegenlaufend und müssen als solche erkannt werden. Ohne ein Langzeitgedächtnis für vorangegangene Temperaturen wäre es für Pflanzen schwierig, die richtige Saison für die Blüte zu erkennen.

Der Pflanzenbiologe Prof. Kentaro Shimizu und sein Doktorand Masaki Kobayashi von der Universität Zürich haben nun in Zusammenarbeit mit einem japanischen Forscherteam einen Weg gefunden, den internen Status von Pflanzen zu messen. Dabei bestimmten sie die Expression des für die Blüte wichtigen Gens FLC. Dieses gilt als ein Hauptschalter des blütenregulierenden Netzwerkes. Die Messungen ergaben, dass das regulatorische System dieses Gens Informationen über vorherrschende Temperaturen der letzten sechs Wochen gespeichert hat. Durch statistische Analyse über zwei Jahre hinweg zeigte sich, dass man 83 Prozent der Variation der FLC-Expression durch die Temperaturen der vorangegangenen sechs Wochen erklären kann, nicht aber durch die Temperaturen über längere oder kürzere Zeiträume.

Die Praxistauglichkeit dieses Modells konnte mit Experimenten nachgewiesen werden, in denen Pflanzen künstlich unterschiedlichen Temperaturbedingungen ausgesetzt wurden. Dabei variierte die Expression des FLC-Gens entsprechend den modellbasierten Vorhersagen. Die mathematischen Modelle, welche die genetischen Grundlagen der Blütezeit berücksichtigen, können also mithelfen, die Reaktion von Pflanzen auf den Klimawandel vorherzusagen.

Wie die Blütezeit in der Natur reguliert wird

Forschungsobjekte waren Pflanzen der Spezies Arabidopsis halleri (Hallersche Schaumkresse), die sich vom Tiefland bis hin zu alpinen Regionen in Europa und Ostasien ausgebreitet hat. Diese Art ist eine nahe Verwandte des genetischen Modellorganismus Arabidopsis thaliana (Ackerschmalwand), in welchem die genetischen Grundlagen der Blütenentwicklung ausgiebig untersucht wurden. In diesem Modell ist bekannt, dass das FLC-Gen ein Hauptschalter im Netzwerk ist, welches die Blütezeit bestimmt. Dennoch war unklar, wie die Blütezeit unter natürlichen Bedingungen reguliert wird. Denn im Gegensatz zu den sonst verwendeten Gewächshäusern gibt es in der Natur kurzfristige Temperaturschwankungen und langfristige saisonale Trends.

Als erstes isolierten die Forscher das FLC-Gen aus Arabidopsis halleri und wiesen nach, dass es auch in diesem Organismus die Blütezeit reguliert. Danach wurden von sechs in der Natur wachsenden Individuen dieser mehrjährig blühenden Spezies Gewebeproben entnommen. Und zwar über zwei Jahre hinweg jede Woche, auch unter extremen Wetterbedingungen wie Schnee, Gewitter oder Sturm. In ihrem Forschungsartikel in der Fachzeitschrift PNAS zeigen die Forscher, dass die Gedächtnis- und Pufferfunktion des FLC-Gens um die sechs Wochen dauert und somit als Filter für kurzfristige Temperaturschwankungen dient.

Quelle: Universität Zürich

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte einheit in folgendes Feld um den Spam-Filter zu umgehen

Anzeige