Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Nachrichten Natur/Umwelt Irrtum aufgeklärt: Antriebsgelenk der Stabheuschrecke entdeckt

Irrtum aufgeklärt: Antriebsgelenk der Stabheuschrecke entdeckt

Archivmeldung vom 16.02.2016

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 16.02.2016 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Thorsten Schmitt
Chris Dallmann arbeitet mit Stabheuschrecken. Sie sind bis zu acht Zentimeter lang. Anders als Heusc
Quelle: Foto: CITEC/Universität Bielefeld (idw)
Chris Dallmann arbeitet mit Stabheuschrecken. Sie sind bis zu acht Zentimeter lang. Anders als Heusc Quelle: Foto: CITEC/Universität Bielefeld (idw)

Die Stabheuschrecke ist in der Biologie ein beliebtes Untersuchungsmodell, um Laufbewegungen bei Insekten zu verstehen. In Lehrbüchern wurde über Jahrzehnte behauptet, dass die Kraft zur Stützung des Körpers und die Kraft zur Fortbewegung unabhängig voneinander von verschiedenen Gelenken geregelt werden. „Das ist nicht richtig“, sagt jetzt der Biologe Chris Dallmann. Die Forschungsergebnisse stellt Dallmann zusammen mit den Professoren Dr. Volker Dürr und Dr. Josef Schmitz im Fachmagazin „Proceedings of the Royal Society“ vor. Die New York Times präsentiert das Forschungsergebnis seit gestern (15.2.2016) in einem Videobeitrag.

Welche Kräfte üben die Beine einer Stabheuschrecke aus, und wie bewegt sich das Tier? Das messen CIT
Quelle: Foto: CITEC/Universität Bielefeld (idw)
Welche Kräfte üben die Beine einer Stabheuschrecke aus, und wie bewegt sich das Tier? Das messen CIT Quelle: Foto: CITEC/Universität Bielefeld (idw)

Die Stabheuschrecke ist in der Biologie ein beliebtes Untersuchungsmodell, um Laufbewegungen bei Insekten zu verstehen. Ihr Vorteil: Körper und Nervensystem sind vergleichsweise einfach aufgebaut. In Lehrbüchern wurde über Jahrzehnte behauptet, dass die Kraft zur Stützung des Körpers und die Kraft zur Fortbewegung unabhängig voneinander von verschiedenen Gelenken geregelt werden. „Das ist nicht richtig“, sagt jetzt der Biologe Chris Dallmann. „Tatsächlich ist ein und dasselbe Gelenk für beide Aufgaben zuständig. Das können wir mit unseren neuen Analysen belegen“, sagt der Doktorand des Exzellenzclusters Kognitive Interaktionstechnologie (CITEC) der Universität Bielefeld. Die Forschungsergebnisse stellt Dallmann zusammen mit den Professoren Dr. Volker Dürr und Dr. Josef Schmitz im Fachmagazin „Proceedings of the Royal Society“ vor. Die New York Times präsentiert das Forschungsergebnis seit gestern (15.2.2016) in einem Videobeitrag.

„Wir wollen herausfinden, wie sich Stabheuschrecken fortbewegen und welche Aufgabe die einzelnen Teile der Beine dabei haben“, erklärt Professor Dr. Josef Schmitz. Professor Dr. Volker Dürr und er betreuen die Doktorarbeit von Chris Dallmann. „Erstaunlicherweise kommt die Kraft zur Vorwärtsbewegung und Körperunterstützung aus dem gleichen Gelenk. Dieses Gelenk dient als Antriebseinheit und erzeugt die größte Kraft im Bein. Die anderen Beingelenke dienen gewissermaßen als Steuereinheiten, welche die Antriebskraft so umlenken, dass sich das Tier sowohl über dem Boden halten als auch vorwärts bewegen kann“, sagt Dallmann. „Ein ähnliches Prinzip gilt beispielsweise beim Insektenflug. Dort stellen große Antriebsmuskeln die Kraft bereit, die dann von kleineren Steuermuskeln in Auftrieb und Vortrieb umgeleitet werden. In der Evolution hat sich offenbar diese prinzipielle Funktionsaufteilung bewährt.“

Noch vor kurzem waren sich Biologen weltweit sicher, dass die Kraft für die Vorwärtsbewegung der Stabheuschrecke aus dem Gelenk kommt, um das sich das Bein rückwärts bewegt. „Der Grund für die falsche Annahme war, dass die Messmethoden zu ungenau waren“, berichtet Josef Schmitz. „Stabheuschrecken wiegen nur etwa ein Gramm. Wegen des geringen Gewichts ließ sich bisher nur sehr schlecht berechnen, welche Kraft die einzelnen Beinglieder ausüben.“

Dallmann arbeitet in der Forschungsgruppe Biologische Kybernetik der Fakultät für Biologie, die von Volker Dürr geleitet wird und am Exzellenzcluster CITEC beteiligt ist. Dallmann wirkt auch an der Weiterentwicklung des Laufroboters Hector mit, für den sich die Forscherinnen und Forscher von den Bewegungen der Stabheuschrecke inspirieren lassen.

Die Forschungsgruppe Biologische Kybernetik hat ein neues Verfahren entwickelt, das mit dem Leichtgewicht der Stabheuschrecke zurechtkommt. Es misst zum einen sehr präzise die Kräfte, die das ganze Bein auf den Boden ausübt. Zum anderen misst es mit hoher zeitlicher Auflösung, wie sich das Bein im Raum bewegt. „Indem ich diese beiden Datenpakete kombiniere, kann ich berechnen, wie viel Kraft jedes einzelne Gelenk freisetzt“, erklärt Dallmann. So kann er zeigen, welches Gelenk die Bewegung antreibt und welche Gelenke die Antriebskraft lediglich umleiten.

Jedes der sechs Beine der Stabheuschrecke wird maßgeblich von drei Gelenken bewegt. Wie ein „L“ sind sie mit dem Körper des Tieres verbunden. Ein Hüftgelenk (Thorax-Coxa-Gelenk) verbindet das Bein mit dem Körper, und um dieses Gelenk bewegt sich das Bein rückwärts. Ein zweites Hüftgelenk (Coxa-Trochanter-Gelenk) verbindet die Hüfte mit dem Oberschenkel, um dieses Gelenk bewegt sich das Bein nach unten. Ein Kniegelenk (Femur-Tibia-Gelenk) verbindet schließlich den Oberschenkel mit dem Unterschenkel, um dieses Gelenk bewegt sich das Bein nach außen.

Um herauszubekommen, wie viel Kraft die einzelnen Beingelenke der Stabheuschrecke erzeugen, ließ Dallmann die Tiere auf einem Steg mit Trittsteinen laufen. Sensoren in den Trittsteinen erfassen den Druck und die Querkräfte, die von den Füßen der Stabheuschrecke ausgehen. Gleichzeitig zeichnete Dallmann den Gang des Insekts mit einem System zur Bewegungserfassung auf. Das Vicon-System registriert mit Infrarotkameras die Bewegung von 17 kleinen Reflektoren (Markern), die an dem Außenskelett der Stabheuschrecke kleben. „Als wir die Messung der Bewegung und der Bodenreaktionskräfte zusammengebracht haben, wurde klar, dass der Vortrieb gar nicht durch das Hüftgelenk erfolgt, um das sich das Bein nach hinten bewegt“, so Dallmann. „Vielmehr entsteht der Vortrieb automatisch dadurch, dass der Oberschenkel stark nach unten drückt, um den Körper zu stützen.“ Forscher dachten bislang, das Herunterdrücken des Schenkels diene alleine der Körperunterstützung.

Die neuen Erkenntnisse dürften nicht nur Änderungen in den Lehrbüchern mit sich bringen. Das Wissen soll auch mit der künstlichen Stabheuschrecke Hector erprobt werden. „Der Roboter ist ähnlich der Stabheuschrecke mit elastischen Antrieben ausgestattet“, sagt Chris Dallmann. „Wir wollen jetzt testen, welche Vorteile es hat, wenn ein Antrieb wie beim tierischen Vorbild sowohl die Körperhöhe als auch die Fortbewegung regelt.“

Chris Dallmann befasst sich in seiner Doktorarbeit mit der Frage, wie Stabheuschrecken ihr Gehen an die Umgebung anpassen. Er ist seit Ende 2013 Mitglied der CITEC-Graduiertenschule. Die Einrichtung ist 2008 gegründet worden und sorgt für die weiterführende wissenschaftliche Qualifikation in der Kognitiven Interaktionstechnologie an der Universität Bielefeld. Derzeit hat die Graduiertenschule rund 100 Mitglieder.

Quelle: Universität Bielefeld (idw)

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte methan in folgendes Feld um den Spam-Filter zu umgehen

Anzeige