Ein Vampirstern gibt sein Geheimnis preis
Archivmeldung vom 09.12.2011
Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 09.12.2011 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.
Freigeschaltet durch Manuel SchmidtAstronomen haben die bislang besten Bilder eines Sterns gewonnen, der große Teile seiner Masse an einen vampirartigen Begleiter verloren hat. Dazu kombinierten sie vier Teleskope am Paranal-Observatorium der ESO zu einem einzigen virtuellen Teleskop mit 130 Metern Durchmesser und einer Bildschärfe 50 mal besser als die des NASA/ESA-Weltraumteleskops Hubble. Überraschenderweise zeigten die Beobachtungsdaten, dass der Massentransfer von einem Stern zum anderen viel schwächer ist als erwartet.
“Wir können jetzt das Licht von vier Teleskopen am VLT miteinander kombinieren und damit extrem scharfe Bilder innerhalb kürzester Zeit erzeugen”, erläutert Nicolas Blind vom französischen Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), der Erstautor des Fachartikels, in dem die Ergebnisse präsentiert werden. “Wir haben Bilder gewonnen, die so hoch aufgelöst sind, dass wir nicht nur zuschauen können, wie die beiden Sterne einander umkreisen, sondern sogar den Durchmesser des größeren Sterns bestimmen können.”
Die Astronomen beobachteten [1] das außergewöhnliche Sternsystem SS Leporis im Sternbild Lepus (der Hase), das aus zwei Sternen besteht, die sich innerhalb von 260 Tagen gegenseitig umkreisen. Die beiden Komponenten sind nur wenig weiter voneinander entfernt als Erde und Sonne. Allerdings dehnt sich der größere und kühlere der beiden Sterne bis auf ein Viertel des Abstands aus, was in etwa dem Durchmesser der Merkurumlaufbahn entspricht. Aufgrund dieses geringen Abstands hat der heiße Begleiter bereits etwa die Hälfte der Masse des größeren Sternes aufgesogen.
“Wir wussten bereits im Vorwege, dass dieses Doppelsternsystem ungewöhnlich ist und dass dort Materie von einem Stern zum anderen fließt”, erklärt Koautor Henri Boffin von der ESO. “Dann fanden wir allerdings heraus, dass der Massentransfer vermutlich ganz anders abläuft als von bisherigen Modellen dieses Prozesses vorherberechnet. Der 'Biss' des Vampirs ist sehr sanft, aber dafür umso effektiver.”
Das Auflösungsvermögen der neuen Beobachtungen ist so gut, dass man erkennen kann, dass der ausgedehnte Riesenstern kleiner ist als bisher angenommen. Das macht es schwieriger, zu erklären, wie er überhaupt so viel Masse an seinen Begleiter verlieren konnte. Die Astronomen gehen jetzt davon aus, dass die Materie, anstatt direkt von einem Stern zum anderen zu fließen, von dem Riesenstern als Sternwind ausgestoßen wird, und dass dieser Sternwind wiederum von dem heißen Begleiter eingefangen wird.
“Diese Beobachtungen demonstrieren ganz hervorragend die neuen Möglichkeiten, die uns solche Momentaufnahmen mit dem Very Large Telescope-Interferometer bieten. Was die Untersuchung solcher faszinierender Doppelsternsysteme angeht, ist dies erst der Anfang”, schließt Koautor Jean-Philippe Berger.
Endnote
[1] Die Bilder entstanden bei Beobachtungen mit dem Very Large Telescope Interferometer (VLTI) am Paranal-Observatorium der ESO. Das Licht von vier 1,8-Meter Hilfsteleskopen wurde mit dem neuen Instrument PIONIER (siehe ann11021) untersucht.
PIONIER wurde am Laboratoire d'Astrophysique de l'Observatoire de Grenoble LAOG/IPAG in Grenoble (Frankreich) entwickelt und ist ein Gastinstrument am Paranal-Observatorium. PIONIER wurde von der Université Joseph Fourier, IPAG, INSU-CNRS (ASHRA-PNPS-PNP) ANR 2G-VLTI und ANR Exozodi finanziert. IPAG ist Teil des Observatoire des Sciences de l'Univers de Grenoble (OSUG).
Um derart hochaufgelöste Bilder zu erhalten, müssen die VLTI-Ingenieure die Strecken, die das Licht von den verschiedenen Teleskopen zum Instrument zurücklegt, auf ein Hundertstel des Durchmessers eines menschlichen Haars genau kontrollieren. Sobald das Licht PIONIER erreicht, wird es zum Herzen des Instruments geleitet, einer besonderen optischen Schaltung von der Größe einer Kreditkarte, die es zur Interferenz bringt. Das Auflösungsvermögen der Teleskopanlage entspricht dann nicht mehr dem der einzelnen 1,8-Meter Hilfsteleskope, sondern dem eines viel größeren “virtuellen Teleskops” von etwa 130 Metern Durchmesser. Dieser Wert ist nur dadurch begrenzt, wie weit voneinander entfernt man die Teleskope positionieren kann.
Das Auflösungsvermögen des NASA/ESA-Weltraumteleskops Hubble beträgt etwa 50 Millibogensekunden, während das des VLTI auf rund eine Millibogensekunde gesteigert werden kann. Das entspricht der scheinbaren Größe eines Astronauten auf der Mondoberfläche, von der Erde aus gesehen.
Quelle: Max-Planck-Institut für Astronomie (idw)