Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Nachrichten Natur/Umwelt Auf den Spuren eines Spurengases

Auf den Spuren eines Spurengases

Archivmeldung vom 21.04.2015

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 21.04.2015 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Manuel Schmidt
Um die Stickoxid-Mengen zu bestimmen, benötigt man auch meteorologische Daten. Daher ließen die Forscher Wetterballons in der Wüste starten. Quelle: Buhalqem Mamtimin, MPI für Chemie. (idw)
Um die Stickoxid-Mengen zu bestimmen, benötigt man auch meteorologische Daten. Daher ließen die Forscher Wetterballons in der Wüste starten. Quelle: Buhalqem Mamtimin, MPI für Chemie. (idw)

Um Aussagen über aktuelle und zukünftige Luftverschmutzungen zu treffen, verwenden Wissenschaftler Modelle, die die Erdatmosphäre simulieren. In diese Modelle fließen viele Informationen wie meteorologische Daten über Temperatur, Feuchte oder Luftströmung ein. Hinzu kommen auch möglichst präzise Werte über Emissionen von Spurengasen wie Ozon oder Stickoxiden, die die Luftqualität beeinflussen. Vereinfacht kann man sagen, dass die Aussagen des Modells desto zuverlässiger werden, je genauer die zugrunde liegenden Daten sind.

Stickoxid wurde in Messkammern auf der Bodenfläche gemessen und über kleine Lufttrichter in unterschiedlichen Höhen über dem Boden eingesammelt. Quelle: Buhalqem Mamtimin, MPI für Chemie. (idw)
Stickoxid wurde in Messkammern auf der Bodenfläche gemessen und über kleine Lufttrichter in unterschiedlichen Höhen über dem Boden eingesammelt. Quelle: Buhalqem Mamtimin, MPI für Chemie. (idw)

Stickstoffdioxid (NO2) ist ein für die Luftqualität relevantes Gas, das beispielsweise den Ozongehalt der Troposphäre beeinflusst. Die Troposphäre ist die unterste Schicht der Erdatmosphäre.

Das Gas entsteht in erster Linie bei der Verbrennung fossiler Energieträger wie Öl, Kohle und Gas, wird aber indirekt auch über mikrobielle Prozesse im Boden gebildet, da Mikroorganismen Stickstoffmonoxid (NO) bilden. In der Luft reagiert das NO in wenigen Minuten mit Ozon zu NO2. Da die Aktivität der Mikroorganismen aber stark von Faktoren wie Bewässerung, Düngung und Temperatur beeinflusst wird, können sich die NO-Mengen, die aus einem Boden strömen, innerhalb von Tagen ändern.

Bisher gibt es weltweit kaum präzise Angaben darüber, wie viel NO aus bestimmten Böden emittiert wird und welchen Einfluss dabei deren Nutzung spielt.

Das will Buhalqem Mamtimin vom Max-Planck-Institut für Chemie ändern. Gemeinsam mit Kollegen geht die Forscherin seit 2008 der Frage nach, welche Mengen an NO beispielsweise von landwirtschaftlich intensiv bewirtschafteten Böden freigesetzt werden und wie groß der daraus entstehende Anteil an NO2 ist, das in der Troposphäre vorliegt.

Was in der Theorie recht einfach klingt, entpuppt sich in der Praxis als sehr aufwendig. Denn es gibt weltweit nur wenige Orte, an denen zwar Landwirtschaft betrieben wird, die gleichzeitig aber von anderen NO-Quellen wie Städten mit Industrie, Kraftwerken und Verkehr sehr weit entfernt sind. Nur an einem solchen Ort lässt sich genau feststellen, wie groß der landwirtschaftliche Anteil der NO-Emissionen ist.

Fündig wurden die Forscher in der Taklamakan-Wüste im Nordwesten Chinas. Die Wüste liegt im uigurischen Gebiet Xinjiang mit der Hauptstadt Urumqi, der Heimat von Buhalqem Mamtimin. Die Taklamakan-Wüste wird im Süden und Norden durch die ehemalige Seidenstraße begrenzt, an der seit den 1950er Jahren riesige landwirtschaftliche Oasen betrieben werden.

Die Forscher entschieden sich für die extrem abgelegene Milan-Oase, in der auf etwa 100 Quadratkilometern Baumwolle und Jujube angebaut werden, eine Steinfrucht, die auch chinesische Dattel genannt wird. Beide Pflanzenarten lieben hohe Temperaturen und gedeihen gut auf dem ariden Wüstenboden, wenn sie gut gedüngt und gewässert werden.

Die Gefahr, gleichzeitig auch NO aus anthropogenen Quellen zu messen, konnten die Forscher vernachlässigen, da „Milan“ von Wüste und Gebirge umgeben ist und die nächsten Oasen viele Kilometer weit entfernt sind. Zudem wird elektrische Energie rein aus Wasserkraft gewonnen, und es kommen hauptsächlich Elektrofahrzeuge zum Einsatz.

Um möglichst präzise Aussagen zu den NO-Emissionen zu erhalten, reisten die Forscher insgesamt dreimal in die Milan-Oase und wendeten verschiedene, voneinander unabhängige Verfahren an. Einerseits nahmen sie Bodenproben von unterschiedlichen Stellen der Oase. Diese brachten sie mit in das Mainzer Labor und untersuchten, wie viel NO von einer genau definierten Bodenmenge an die Luft abgegeben wird.

Während der folgenden Aufenthalte machten Mamtimin und ihre Kollegen außerdem zweierlei Messungen vor Ort: Hierzu verwendeten sie Spektrometer an definierten Punkten der Oase. Die Analyse beruht darauf, dass NO2 wie jedes Molekül ein individuelles Absorptionsspektrum von Licht hat, aus dem man die NO2-Konzentrationen aus den atmosphärischen Messspektren bestimmen kann.

Zudem bestimmten sie den NO-Austritt aus dem Boden auch direkt: Durch kleine Messkammern auf der Bodenfläche wurde ständig Umgebungsluft gepumpt und die Konzentrationsdifferenz zwischen Eingang- und Ausgangsluft bestimmt.

Die vor Ort und im Labor gemessenen Werte überprüften die Wissenschaftler mit Ausbreitungswerten von NO, die sie mit Hilfe von dreidimensionalen Modellen berechneten. Hierbei halfen Satellitenbilder, um festzustellen, wo in der Oase welche Nutzpflanze angebaut wurde und wie groß die entsprechenden Felder waren.

Aus allen Parametern zusammen bestimmten die Forscher beispielsweise, wie viel NOx aus Baumwollfeldern strömt. Und diese Zahlen sind erstaunlich: Pro Sekunde setzt ein Quadratmeter zwischen 10 und 30 Nanogramm NO frei. Im Vergleich zu einem typischen europäischen Weizenfeld ist das die fünf- bis zehnfache Menge.

Überrascht ist die Forscherin Mamtimin von diesen hohen Mengen nicht, da die Oasen mit bis zu 600 Kilogramm Stickstoff pro Jahr und Hektar intensiv gedüngt und gut bewässert werden. Die hohen Temperaturen in der Wüstenregion sorgen zudem dafür, dass die Bodenmikroorganismen besonders aktiv sind und viel NO abgeben, das dann aus dem Boden in die Luft strömt.

Da die Baumwollproduktion der Region in und um die Taklamakan-Wüste etwa 80 Prozent der chinesischen Gesamtproduktion ausmacht, schlussfolgern Mamtimin und ihre Kollegen, dass die landwirtschaftliche NO-Emission mit den Emissionen aus Verkehr und Industrie in der Region vergleichbar ist oder sie sogar übersteigt. Dies ist ein wichtiges Ergebnis zur Bestimmung der regionalen Luftqualität, zumal Experten davon ausgehen, dass China die landwirtschaftliche Produktion in den nächsten Jahren noch deutlich steigern wird und somit noch mehr biogenes NO in der Atmosphäre zu erwarten ist.

In zukünftigen Studien werden sich Mamtimin und ihre Kollegen bei ihren Stickoxid-Analysen anderen ariden Gebieten widmen, in denen es neben biogenen auch starke anthropogene Emissionsquellen gibt. So plant die Forscherin aktuell Messungen in Kasachstan und Usbekistan – beides Länder, in denen sich die Landnutzung ähnlich ändern wird wie im Bereich der Taklamakan-Wüste und in deren Metropolen die Luftverschmutzung bereits sehr hoch ist.

Die Untersuchungen von Mamtimin und ihrer Kollegen wurden gemeinsam von der Deutschen Forschungsgemeinschaft (DFG MA 4798/1-1) und der Max-Planck-Gesellschaft finanziert.

Quelle: Max-Planck-Institut für Chemie (idw)

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte jodelt in folgendes Feld um den Spam-Filter zu umgehen

Anzeige