Leben in der geologischen Knautschzone: Gebirge fördern die biologische Vielfalt
Archivmeldung vom 27.02.2013
Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 27.02.2013 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.
Freigeschaltet durch Manuel SchmidtLange wurde angenommen, dass stabile Umweltbedingungen die Biodiversität begünstigen, da sie der Artbildung Zeit lassen. Neue Forschungsergebnisse legen aber nahe, dass sich in geologisch dynamischen Regionen deutlich mehr Arten bilden. Junge Gebirge bieten neue Lebensbedingungen und noch unbesetzte Nischen, in denen neue Arten entstehen. Wissenschaftler der Universitäten Amsterdam und Frankfurt, der Senckenberg Gesellschaft für Naturforschung (SGN) und des Biodiversität und Klima Forschungszentrums (BiK-F) plädieren in der März-Ausgabe der Zeitschrift Nature Geoscience für eine engere Kooperation zwischen Bio- und Geowissenschaften, um diese Prozesse besser zu verstehen.
Die lange geltende Annahme, dass langfristig stabile Lebensbedingungen mit einer großen Artenvielfalt einhergehen, trifft nicht überall zu. Vielmehr deuten neue Studien darauf hin, dass es gerade instabile, sich wandelnde Lebensräume sind, die der biologischen Vielfalt stets neuen Raum zur weiteren Entfaltung bieten. Die Entstehung von Bergketten und Gebirgen spielt hier eine große Rolle: Hier bilden sich unbesetzte Lebensräume mit neuen klimatischen und landschaftlichen Bedingungen und ganz speziellen ökologischen Gegebenheiten, die gerade dazu einladen, von neu entstehenden Arten besiedelt zu werden.
Barriere und Brücke zugleich
Bergketten und Gebirge haben vielfältige Auswirkungen auf die biologische Vielfalt: Während sie die Verbreitung mancher Organismen unterbinden, stellen sie für andere Arten Brücken zwischen Lebensräumen dar. Neu entstehende Gebirge zerschneiden vorher homogene Lebensräume, oder aber verbinden Landmassen und schaffen so neue Wege für sich ausbreitende Arten. Gebirgsregionen beherbergen außerdem eine Vielzahl sehr speziell angepasster Arten in räumlich kleinen Nischen – und erstaunlicherweise sind diese Arten von sich ändernden Klimabedingungen oft geringer betroffen als Flachlandarten: Sie müssen nicht weit wandern, um wieder optimale Temperaturen vorzufinden. Ihr großer Artenreichtum lässt Bergregionen auch zur „Biodiversitätspumpe“ für die angrenzenden Flachlandregionen werden, in die laufend Arten aus den Gebirgen zuwandern und bei der notwendigen Anpassung zu neuen Spezies werden.
Im Fluss: Entstehung von Lebensräumen
Aber nicht nur das unmittelbare Umfeld wird durch die Arten aus den Gebirgen bereichert, die majestätischen Dächer der Welt prägen vielmehr ganze Kontinente: Das an biologischer Vielfalt unermesslich reiche Amazonasbecken in Südamerika beispielsweise wäre ohne die Anden nicht denkbar. Die aus der Verwitterung der andinen Gesteine stammenden nährstoffreichen Sedimente bilden die Grundlage für den einzigarten Artenreichtum der Amazonasregion. Und der Einfluss des Gebirges reicht sogar bis in den Atlantischen Ozean: Durch den Amazonas weit ins Meer hinaus transportierte Sedimente schaffen hier völlig andere geochemische Bedingungen als in den angrenzenden Gewässern. Und dies nicht nur in Südamerika: Prof. Dr. Andreas Mulch (BiK-F, SGN und Goethe-Universität), einer der Frankfurter Autoren, betont: „Die Rolle von Gebirgsregionen als einer der Motoren der Evolution ist keine Besonderheit der Anden. Sie gilt ebenso für die Himalayaregion oder auch die Alpen.“
Pionier Alfred Wegener: Forderung nach Kooperation zwischen Geo- und Biowissenschaften
„Schon Alfred Wegener forderte bei der Vorstellung seiner damals noch umstrittenen Theorie der Kontinentaldrift im Senckenbergmuseum eine Annäherung zwischen den Wissenschaftsdisziplinen“, so Prof. Dr. Dr. h. c. Volker Mosbrugger, Generaldirektor der Senckenberg Gesellschaft für Naturforschung und Mitautor des Beitrags. „Aber erst heute, hundert Jahre später, findet diese langsam statt.“ Zum Verständnis des Werdens und Vergehens der globalen Biodiversität müssen Geo- und Biowissenschaften aber intensiv zusammenarbeiten, um die auf ganz unterschiedlichen räumlichen, zeitlichen und taxonomischen Skalen ablaufenden Evolutionsprozesse zu erfassen. Neue molekularbiologische Methoden und moderne geochemische Ansätze zur Rekonstruktion von Erdoberflächenprozessen ermöglichen es, immer umfassender zu erklären, wie Geologie und Klima interagieren und gemeinsam Evolution beeinflussen. Außerdem begünstigt ein wachsendes wissenschaftliches Interesse an interdisziplinären Projekten die Zusammenarbeit. In ihrer Stellungnahme an die Zeitschrift Nature Geoscience plädieren die Wissenschaftler dafür, diese neuen gemeinsamen Forschungswege zu beschreiten, da ein umfassendes Verständnis der globalen Biodiversität nur erreicht werden kann, wenn fächerübergreifende Forschung sich der Interaktion Geosphäre und Biosphäre widmet.
Quelle: Senckenberg Forschungsinstitut und Naturmuseen (idw)