Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Nachrichten IT/Computer Mit High-Speed-CMOS-Sensoren sieht man besser

Mit High-Speed-CMOS-Sensoren sieht man besser

Archivmeldung vom 02.01.2012

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 02.01.2012 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Thorsten Schmitt
Hier kommen die High-Speed-CMOS-Sensoren zum Steuern von Produktionsmaschinen zum Einsatz. Bild: Fraunhofer IMS (idw)
Hier kommen die High-Speed-CMOS-Sensoren zum Steuern von Produktionsmaschinen zum Einsatz. Bild: Fraunhofer IMS (idw)

Herkömmliche CMOS-Bildsensoren sind für lichtschwache Anwendungen wie Fluoreszenz kaum brauchbar. Denn große, in einer Matrix angeordnete Pixel erlauben keine raschen Auslesegeschwindigkeiten. Ein neues optoelektronisches Bauteil beschleunigt diesen Prozess. Es ist bereits zum Patent angemeldet.

Längst haben CMOS-Bildsensoren in der Digitalfotografie den Markt erobert. In der Herstellung sind sie wesentlich günstiger als bisherige Sensoren. Auch in Sachen Stromverbrauch und Handhabung sind sie überlegen. Deshalb verbauen die großen Hersteller von Handy- und Digitalkameras fast ausschließlich nur noch CMOS-Chips in ihre Produkte. Das schont den Akku – und die Kameras werden immer kleiner. Doch die optischen Halbleiterchips stoßen mitunter an ihre Grenzen: Während die Miniaturisierung in der Unterhaltungselektronik zu immer kleineren Pixelgrößen von etwa 1 Mikrometer führt, sind bei bestimmten Anwendungen größere Pixel von mehr als 10 Mikrometer gefragt. Besonders in Bereichen, in denen nur wenig Licht zur Verfügung steht, wie in der Röntgenfotografie oder in der Astronomie, gleicht die größere Pixelfläche den Lichtmangel aus. Für die Umwandlung der Lichtsignale in elektrische Impulse sorgen Pinned-Photodioden (PPD). Diese optoelektrischen Bauelemente sind für die Bildverarbeitung wesentlich und werden in die CMOS-Chips eingebaut. »Doch wenn die Pixel eine bestimmte Größe überschreiten, haben die PPD ein Geschwindigkeitsproblem«, erklärt Werner Brockherde, Abteilungsleiter am Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS. Denn meistens erfordern lichtschwache Anwendungen hohe Bildraten. »Dafür ist die Auslesegeschwindigkeit mit PPD jedoch zu gering«, sagt Brockherde.

Für dieses Problem haben die Fraunhofer-Forscher jetzt eine Lösung gefunden – sie ist bisher einzigartig und bereits patentiert: Die Wissenschaftler haben ein neues optoelektronisches Bauelement entwickelt, LDPD genannt – »Lateral drift field Photodetector«. »Darin wandern die durch das einfallende Licht erzeugten Ladungsträger mit High-Speed zum Ausgang«, erklärt der Forscher. Bei der PPD diffundieren die Elektronen lediglich zum Ausleseknoten. Ein vergleichsweise langsamer Prozess, der für viele Anwendungen ausreicht. »Indem wir aber innerhalb des photoaktiven Bereichs ein elektrisches Spannungsfeld in das Bauelement integriert haben, konnten wir diesen Vorgang bis zum hundertfachen beschleunigen.«

Um das neue Bauelement realisieren zu können, erweiterten die Fraunhofer-Forscher den derzeit verfügbaren 0,35 µm-Standard-CMOS-Prozess zur Herstellung der Chips: »Das zusätzliche LDPD-Bauelement darf die Eigenschaften der restlichen Bauteile nicht beeinträchtigen«, sagt Brockherde. Mithilfe von Simulationsberechnungen gelang es den Experten, diesen Anforderungen zu genügen – ein Prototyp der neuen High-Speed-CMOS-Bildsensoren ist bereits verfügbar. »Die Freigabe für die Serienfertigung erwarten wir für nächstes Jahr«, so Brockherde.

Die High-Speed-CMOS-Sensoren sind ideale Kandidaten für Anwendungen, in denen großflächige Pixel und eine hohe Auslesegeschwindigkeit erforderlich sind: Nicht nur in der Astronomie, bei der Spektroskopie oder in der modernen Röntgenfotografie könnten sie zum Einsatz kommen. Sie eignen sich auch hervorragend als 3D-Sensoren, die nach dem Time-of-Flight-Verfahren arbeiten. Dabei senden Lichtquellen kurze Impulse aus, die von den Objekten reflektiert werden. Die Laufzeit des reflektierten Lichts wird dann von einem Sensor erfasst und ergibt ein ganzheitliches 3D-Bild. Diese Technologie ist etwa beim Thema Aufprallschutz von Interesse. Denn die Sensoren können das Umfeld dreidimensional exakt erfassen. Für die TriDiCam GmbH haben die Fraunhofer-Forscher bereits einen solchen Flächensensor mit der einzigartigen Pixelanordnung entwickelt.

Quelle: Fraunhofer-Gesellschaft (idw)

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte bordell in folgendes Feld um den Spam-Filter zu umgehen

Anzeige