Diamant als Quantenspeicher
Archivmeldung vom 10.08.2011
Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 10.08.2011 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.
Freigeschaltet durch Thorsten SchmittQuantencomputer gehörten schon seit Jahren zu den großen Zielen der Wissenschaft. Wenn ein gewöhnlicher Computer eine Liste von Aufgaben zu erledigen hat, muss er sie mühsam nacheinander abarbeiten. Ein Quantencomputer könnte verschiedene Zustände gleichzeitig einnehmen – und dadurch verschiedene mögliche Lösungen eines Problems gleichzeitig ausprobieren. Einen wesentlichen Schritt Richtung Quantencomputer könnten nun Diamanten bringen. An der TU Wien gelang es, Mikrowellen an Quanten-Zustände eines Diamanten anzukoppeln.
Die Ergebnisse dieses Forschungsprojektes wurden nun im angesehenen Fachjournal „Physical Review Letters“ veröffentlicht.
Unterschiedliche Quanten-Technologien in einem Chip
Schon lange sucht man nach passenden physikalischen Bausteinen für einen Quantencomputer – bisher jedoch ohne den gewünschten Erfolg. Zwar gab es schon verschiedene Ideen für Systeme, die auf quantenphysikalische Weise Information speichern, doch meist sind sie sehr fragil und instabil. Wenn etwas als Bauelement für einen Computer dienen soll, dann muss es sehr rasch umschalten lassen. Gleichzeitig muss es einen quantenphysikalischen Zustand ausreichend lange zuverlässig konservieren können, sodass genug Zeit besteht um damit Rechnungen durchzuführen. „Es gibt kein Quantensystem, das alle Anforderungen gleichzeitig erfüllt“, meint Johannes Majer vom Atominstitut der TU Wien. Mit seinem Forschungsteam koppelte er daher zwei völlig verschiedene Quantensysteme, um die Vorteile beider Seiten nutzen zu können: Mikrowellen und Diamanten.
Lichtteilchen und Diamanten
Auch bei herkömmlichen Computern gibt es einen Prozessor und einen Arbeitsspeicher. Der Prozessor führt schnelle Rechnungen durch, der Speicher soll sich die Ergebnisse möglichst dauerhaft merken. Ähnlich verhalten sich die beiden Quantensysteme zueinander, die auf dem Quanten-Chip an der TU Wien nun vereint wurden: Schnelle Rechenoperationen werden durch einen sogenannten Mikrowellen-Resonator ermöglicht. Sein Quantenzustand wird durch Lichtteilchen im Mikrowellen-Bereich bestimmt. Dieser Mikrowellen-Resonator wird an eine dünne Diamantschicht angekoppelt, in der Quantenzustände gespeichert werden können.
Fehler sind erwünscht
Während man für wertvollen Schmuck möglichst reine, makellose Diamanten
sucht, benötigt man für die Quantenexperimente genau das Gegenteil: Hier
sind Diamanten mit Fehlern gefragt. Wenn sich im regelmäßigen
Kohlenstoff-Gitter des Diamanten nämlich Stichstoff-Atome einschleichen,
dann wird der Diamant zwar beinahe schwarz, doch dafür kann er dann
Quantenzustände stabil speichern. „Wir konnten zeigen, dass sich in
unserem Chip Quanten-Zustände zwischen Mikrowellen und den
Stickstoff-Zentren im Diamanten übertragen lassen“, erklärt der
TU-Assistent Robert Amsüss. Je mehr Stickstoffatome bei dieser
Übertragung beteiligt sind, umso stabiler „merkt“ sich der Diamant den
eingespeicherten Quantenzustand.
Überraschenderweise konnte bei dem Experiment auch gezeigt werden, sich
sogar im Drehimpuls der Atomkerne Quantenzustände speichern lassen. „Das
könnte der erste Schritt zu einem Atomkern-Speicher sein“, mutmaßt
Johannes Majer – doch zunächst soll der Diamant-Quantenchip in seiner
jetzigen Form weiterentwickelt werden. Die nötigen Teilelemente sind nun
vorhanden – jetzt geht es darum, sie für echte, stabile
Rechenoperationen zu nützen.
Quelle: Technische Universität Wien