Dem Riff-Paradoxon auf der Spur
Archivmeldung vom 31.10.2015
Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 31.10.2015 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.
Freigeschaltet durch Manuel SchmidtBremer Meeresbiologen erklären, weshalb tropische Korallenriffe trotz nährstoffarmer Umgebung so produktiv sind. Die Forschungsergebnisse sind jetzt in der Fachzeitschrift „Proceedings of the Royal Society“ veröffentlicht worden.
Tropische Korallenriffe sind die artenreichsten Lebensräume auf unserem Planeten. Gleichzeitig sind sie auch sehr produktiv, obwohl sie in extrem nährstoffarmen Meeresgebieten beheimatet sind. Dieses sogenannte Riff-Paradoxon, das schon 1842 von Charles Darwin formuliert wurde, beschäftigt bis heute die Wissenschaft. Besonders Stickstoff ist ein absolutes Mangelelement in Korallenriffen, wenngleich dieses Element sehr wichtig ist für Wachstumsprozesse, da es in den Proteinen und der DNA aller Organismen zu finden ist.
Nun ist es einer Gruppe von Meeresbiologen unter Leitung eines Wissenschaftlers der Universität Bremen gelungen, eine plausible Erklärung für das Riff-Paradoxon zu liefern: Die Umwandlung von Stickstoff – die Stickstofffixierung – durch Mikroorganismen, die mit Korallen assoziiert sind, unterstützt offensichtlich die Umwandlung von Kohlenstoff – die Kohlenstofffixierung – durch Mikroalgen im Korallengewebe. Dies ist die Haupterkenntnis einer Bremer Studie, die am 28. Oktober 2015 in der renommierten Fachzeitschrift „Proceedings of the Royal Society“ veröffentlicht wurde.
Korallen-Holobionten
Korallen sind zwar Tiere, sogenannte Nesseltiere, aber in ihrem Gewebe leben so viele Mikroalgen und andere Mikroorganismen wie Bakterien, dass sie eigene Mikro-Ökosysteme, sogenannte Holobionten, darstellen. Mit Hilfe ihrer kleinen Mitbewohner sind Korallen-Holobionten in der Lage, einige Prozesse durchzuführen, die für Tiere völlig untypisch sind. Besonders wichtig für die Produktivität von Korallen ist die Kohlenstofffixierung über die Photosynthese der Mikroalgen: Hier wird Kohlendioxid mit Hilfe von Lichtenergie umgewandelt in organisches Material. Durch diesen Prozess sind Korallen in der Lage, extrem hohe Wachstumsraten zu erreichen und nicht nur Lebensräume sondern auch Nahrung für andere Organismen zu schaffen. Korallen-Holobionten führen die Kohlenstofffixierung in einer außergewöhnlichen Intensität durch, und das, obwohl sie fast keinen Stickstoff zur Verfügung haben, um daraus Biomasse zu bilden.
Wie kommt das Paradoxon zustande?
Können gleichzeitig stattfindende Prozesse, vor allem Stickstofffixierung durch Bakterien und Kohlenstofffixierung durch Mikroalgen, eine Rolle gespielt haben? Genau diese unorthodoxe Fragestellung beschäftigt den Bremer Meeresökologen Professor Christian Wild seit langer Zeit. Mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) erforschte er gemeinsam mit mehreren Doktoranden – v.a. dem italienischen Nachwuchswissenschaftler Ulisse Cardini als Erstautor der Studie – und Kollegen den Zusammenhang zwischen Kohlenstoff- und Stickstofffixierung durch Korallen.
Das Team untersuchte diese Prozesse an allen dominanten Steinkorallen aus einem Korallenriff des nördlichen Roten Meers in Jordanien während mehrerer langer Expeditionen in allen Jahreszeiten des Jahres 2013. Das Besondere am Untersuchungsstandort war die hohe Saisonalität, das heißt eine starke natürliche Schwankung der Nährstoffkonzentrationen im Wasser zwischen den Jahreszeiten. Überraschenderweise war aber die Kohlenstofffixierung aller Korallen über das gesamte Jahr sehr konstant. Das galt sogar für den Sommer, wenn die Nährstoffkonzentrationen besonders niedrig waren. Der Schlüssel für diesen Befund lag offensichtlich in der Stickstofffixierung der Mikroorganismen. Diese war, das ergab eine Vielzahl von Messungen, im Sommer ungefähr um das Zehnfache erhöht im Vergleich zu den anderen Jahreszeiten.
Die Befunde der Studie in ihrer Gesamtheit deuten darauf hin, dass durch die Stickstofffixierung der Mikroorganismen die im Sommer vorherrschende extreme Stickstoff-Limitierung überwunden wurde. Prozesse durch Bakterien unterstützen also Prozesse durch Mikroalgen im Korallengewebe, so dass letztendlich nicht nur das Tier, sondern auch das ganze Riff, davon profitiert. Insofern betritt die Publikation von Cardini et al. in mehrfacher Hinsicht wissenschaftliches Neuland. Es wird klar, wie die einzelnen Prozesse der unterschiedlichen Korallenbewohner miteinander verzahnt sind. Und es deutet sich weiterhin an, dass die wichtige Rolle von Mikroorganismen in diesem Zusammenhang bisher unterschätzt wurde. Die Erkenntnisse des internationalen Forscherteams um den Bremer Professor Christian Wild und seinem Mitarbeiter Dr. Ulisse Cardini liefern eine neue wichtige Erklärung für das Darwinsche Riffparadoxon.
Quelle: Universität Bremen (idw)