Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Berichte Wissenschaft Quantitative Fluoreszenzmikroskopie per Knopfdruck

Quantitative Fluoreszenzmikroskopie per Knopfdruck

Archivmeldung vom 26.04.2006

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 26.04.2006 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Thorsten Schmitt

Wissenschaftler aus Göttingen entwickeln neue Methoden zur quantitativen Analyse molekularer Prozesse. Moleküle sind die Grundbausteine jeden Lebens. Um zu verstehen, wie die Prozesse des Lebens funktionieren - wie zum Beispiel Nervenzellen Informationen kodieren und weiterleiten - ist die Analyse der molekularen Grundlagen solcher Vorgänge unerlässlich.

Seit etwa zwei Jahrzehnten nutzen Wissenschaftler so genannte "Imaging Technologien", um mit Hilfe von Fluoreszenzfarbstoffen im lebenden Gewebe molekulare Prozesse sichtbar zu machen und zu beobachten. Mit Farbstoffen, die Kalzium binden, lässt sich zum Beispiel beobachten, dass die Konzentration von Kalziumionen in einer Nervenzelle ansteigt, wenn sie einen Impuls sendet. Am besten werden solche Experimente heute in Gewebsschnitten durchgeführt. Hier waren aber bisher genaue quantitative Aussagen nicht möglich. Mit Hilfe computergestützter Methoden ist es Prof. Dr. Dr. Detlev Schild und seinem Mitarbeiter Tsai-Wen Chen nun gelungen, molekulare Prozesse im lebenden Gewebe genau zu quantifizieren. Die Arbeit wird in der Aprilausgabe der renommierten Zeitschrift "Biophysical Journal" publiziert. Professor Schild ist Direktor der Abteilung Neurophysiologie und zelluläre Biophysik am Bereich Humanmedizin der Universität Göttingen, Bereich Humanmedizin. Er forscht am DFG - Forschungszentrum "Molekularphysiologie des Gehirns (CMPB)" sowie am Bernstein Center for Computational Neuroscience. Tsai-Wen Chen ist PhD - Student des Göttinger internationalen Studiengangs Neuroscience und promoviert in Schilds Arbeitsgruppe.

Ein großes Problem bei der Ermittlung quantitativer Daten aus Fluoreszenzfärbungen bereitet die so genannte Hintergrundfärbung. Fluoreszenzfarbstoff, der unspezifisch am Gewebe bindet, oder Reflexionen in der Optik können dazu beitragen, dass auch dort ein Fluoreszenzsignal gemessen wird, wo die zu untersuchenden Moleküle gar nicht vorhanden sind. Zusätzlich wird die quantitative Bestimmung des Signals durch "Rauschen" gestört. Ursache für das "Rauschen" sind Unregelmäßigkeiten im Fluoreszenzsignal und im Verstärker. Gemeinhin versuchen Wissenschaftler das Hintergrundsignal abzuschätzen, indem sie die Fluoreszenz in einem Bereich des Gewebes messen, der aufgrund theoretischer Überlegungen kein spezifisches Signal haben dürfte. Diese Methode ist aber nicht nur mühsam, sie ist auch recht ungenau.

Prof. Schild und sein Mitarbeiter Chen suchten daher einen anderen Weg zur Hintergrundbestimmung, der nicht von Messungen in benachbarten Regionen abhängig ist. Sie nutzten diese Methode, um die Veränderung der Kalziumionenkonzentration in Nervenzellen genau zu bestimmen. Die Kalziumionenkonzentration, und damit das spezifische Signal, verändern sich mit der Aktivität der Zelle, das Hintergrundsignal hingegen nicht. "Diese Zeitinformation in den Fluoreszenzen haben wir genutzt, um dadurch den Hintergrund herauszurechnen", erläutert Schild.

Gemessen wird die Fluoreszenz an verschiedenen Punkten in einer "region of interest" (ROI), dem Bereich einer Zelle oder eines Gewebes, dessen Kalziumhaushalt der Forscher ermitteln möchte. Die genauen Werte sind an den verschiedenen Messpunkten in der ROI in der Regel unterschiedlich, weil das Mikroskop ein zweidimensionales Bild einer dreidimensionalen Struktur liefert. Diese Unterschiede werden von der neuen Methode ausgenutzt.

"Im Gegensatz zu den absoluten Werten ist aber die Dynamik, mit der sich das spezifische Signal an unterschiedlichen Messpunkten verändert, gleich. Die ROI muss aufgrund theoretischer Überlegungen so gewählt sein, dass diese Voraussetzung gegeben ist", erklärt Schilds Mitarbeiter Chen. So ließe sich dann anhand der zeitlichen Veränderung der Fluoreszenz an verschiedenen Messpunkten sowohl das Hintergrundsignal als auch das Rauschen herausrechnen.

"Die Methode wird eine breite Anwendung finden", ist Prof. Schild uberzeugt. "Um eine genaue Vorstellung davon zu gewinnen, wie eine Zelle Signale interpretiert oder mit welchen Mechanismen Zellen miteinander kommunizieren, ist die Quantifizierung molekularer Daten unerlässlich. Mit der Methode, die Chen und Schild entwickelt haben, lassen sich quantitative Daten nicht nur sehr genau, sondern auch sehr schnell bestimmen. Mikroskophersteller können unsere Methode nun so in ihre Software einbauen, dass der Hintergrund automatisch per Knopfdruck abgezogen wird", so Schild.

Quelle: Pressemitteilung Informationsdienst Wissenschaft e.V.

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte router in folgendes Feld um den Spam-Filter zu umgehen

Anzeige