Wie Mitochondrien in Form gebracht werden
Archivmeldung vom 09.05.2015
Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 09.05.2015 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.
Freigeschaltet durch Thorsten SchmittMitochondrien sind die Kraftwerke der Zellen. Sie produzieren einen Großteil der Energie, die Tiere und Pflanzen zum Leben benötigen. Um das leisten zu können, besitzen sie eine besondere Struktur: In ihrem Inneren befindet sich eine stark gefaltete Membran. Eine Forschungsgruppe unter der Leitung von Prof. Dr. Michael Meinecke, European Neuroscience Institute Göttingen (ENI-G) und Mitglied im Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), hat nun ein Protein entdeckt, das bei dieser Faltung eine wichtige Rolle spielt. Die Forschungsergebnisse sind in der renommierten englischsprachigen Fachzeitschrift „Cell Metabolism“ er-schienen.
Einige Hundert Mitochondrien gibt es durchschnittlich in jeder Zelle. Sie haben gleich mehrere Aufgaben: Sie stellen Adenosintriphosphat (ATP) her, den wichtigsten Energieträger in Zellen. Außerdem produzieren sie eine Vielzahl von Proteinen und andere chemische Verbindungen, die für die Zelle unverzichtbar sind. Auch beim programmierten Zelltod, der Apoptose, sind sie von zentraler Bedeutung. Um diese verschiedenen Funktionen erfüllen zu können, haben Mitochondrien einen besonderen Aufbau. Neben ihrer äußeren Membran besitzen sie eine weitere, innere Membran. Im Gegensatz zur äußeren ist diese innere Membran nicht glatt, sondern in Falten gelegt, die einen Großteil des Innenraums der Mitochondrien ausfüllen. Die Falten vergrößern die Membranoberfläche in den Mitochondrien. Damit steht mehr Platz für die vielen Stoffwechselvorgänge zur Verfügung, die dort ablaufen.
Wie wichtig die besondere Gestalt der inneren Mitochondrienmembran ist, zeigt sich, wenn die Faltung gestört ist: Eine solche Veränderung löst in Zellen oft den programmierten Zelltod aus, die Zellen sterben. Bisher war wenig darüber bekannt, welche Faktoren und Mechanismen die Faltung der Membran steuern. „Wir haben herausgefunden, dass das Protein Mic10 die Form von Membranen verändern kann und wie es in den Mitochondrien die Faltenbildung steuert“, sagt Prof. Dr. Michael Meinecke, Senior-Autor der Publikation und Leiter der Forschergruppe „Molecular Membrane Biology“.
Das Protein Mic10 ist Bestandteil des MICOS-Komplexes, der aus mehreren Proteinen zusammengesetzt ist und in Mitochondrien am Beginn der Membranfalten sitzt. „Seit Kurzem ist bekannt, dass MICOS notwendig ist, damit sich die innere Mitochondrienmembran richtig faltet“, sagt Prof. Meinecke. „Insbesondere, wenn das Mic10-Protein fehlt, ändert sich die Form der Membranfalten drastisch.“
Die Göttinger Forscher wollten herausfinden, wie Mic10 an der Faltenbildung beteiligt ist. Dafür schleusten sie das Protein zunächst im Reagenzglas in künstliche, faltenlose Membranbläschen ein. „Als wir diese Bläschen dann unter dem Mikroskop betrachteten, fanden wir röhrenförmige Einstülpungen der Membran“, sagt Mariam Barbot, Erst-Autorin der Publikation und Doktorandin in der Forschungsgruppe Molecular Membrane Biology. „Damit hatten wir den Beweis, dass Mic10 die Form von Membranen verändern kann.“
Doch wie genau schafft es Mic10, Membranen zu verformen? Die Wissenschaftler fanden heraus, dass das Protein mit einem Teil in der inneren, gefalteten Mitochondrienmembran verankert ist. Die Daten lassen vermuten, dass dieser Teil von Mic10 dabei die Form eines Keils annimmt. „Am breiten Ende des Keils würde mehr Membran verdrängt als am spitzen Ende, so dass sich in der Membran eine Kurve bildet“, sagt Prof. Meinecke. „Die Keilform könnte damit erklären, wie Mic10 zur Faltenbildung beiträgt.“
Von anderen Membransystemen weiß man, dass sich häufig mehrere identische Proteine zusammenlagern, um die Gestalt der Membran zu verändern. Die Biochemiker testeten als nächstes, ob auch Mic10 auf diese Weise funktioniert. Dafür veränderten sie das Protein so, dass es seinesgleichen nicht mehr binden konnte. Das so manipulierte Mic10 brachten die Forscher in Membranbläschen. „Tatsächlich bildeten die Bläschen keine Einstülpungen mehr“, sagt Barbot. „Die Mic10-Proteine können Membranen also nur falten, wenn sie sich zu mehreren zusammenlagern.“
Um herauszufinden, ob Mic10 so auch in lebenden Zellen arbeitet, wiederholten die Wissenschaftler ihre Versuche in Hefezellen. Diese eignen sich für derartige Untersuchungen besonders gut, da sie sich leicht manipulieren lassen und tierischen Zellen sehr ähnlich sind. Die Experimente führten die Wissenschaftler in Zusammenarbeit mit der Forschungsgruppe Struktur und Dynamik von Mitochondrien von Prof. Dr. Stefan Jakobs am Max-Planck-Institut für biophysikalische Chemie in Göttingen durch. Die Beobachtungen aus den Versuchen mit Hefezellen bestätigten die bisherigen Erkenntnisse: Mit verändertem Mic10, das sich nicht mehr mit anderen Mic10-Proteinen zusammenlagern konnte, war die Faltenbildung auch in den Hefe-Mitochondrien gestört. Nur Zellen mit normalem Mic10 hatten natürlich gefaltete Membranen.
Die neuen Erkenntnisse über Mic10 bringen nicht nur Licht ins Dunkel der Mitochondrien. Auch Membranen in anderen Zellbestandteilen zeigen besondere Formen. Meist ist nur wenig darüber bekannt, wie diese zustande kommen. Möglicherweise funktioniert die Faltung dort ähnlich wie im Fall von Mic10 in den Mitochondrien.
Quelle: Universitätsmedizin Göttingen - Georg-August-Universität (idw)