Einstein-Experiment erfolgreich im Weltraum
Archivmeldung vom 23.04.2015
Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 23.04.2015 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.
Freigeschaltet durch Manuel SchmidtWerden tatsächlich alle Arten von Uhren in gleicher Weise durch die Gravitation beeinflusst, wie es Albert Einsteins Allgemeine Relativitätstheorie voraussagt? An Bord einer TEXUS-Rakete wurden dazu am Donnerstag Präzisionsexperimente mit Lasern durchgeführt. Eines der Herzstücke dafür war ein Halbleiterlasermodul, das am Berliner Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), entwickelt, gebaut und getestet wurde.
Laut Albert Einstein gehen Uhren umso langsamer, je tiefer sie sich im Gravitationspotential einer Masse befinden – je näher sie also zum Beispiel einem Himmelskörper sind. Dieser Effekt wird im Rahmen der Allgemeinen Relativitätstheorie als Gravitations-Rotverschiebung bezeichnet – er zeigt sich an Spektrallinien, die sich zum roten Ende des Spektrums hin verschieben. Die Allgemeine Relativitätstheorie sagt auch voraus, dass der Gang aller Uhren in gleicher Weise von der Gravitation beeinflusst wird, unabhängig davon, wie diese Uhren physikalisch oder technisch realisiert sind. Neuere Theorien der Gravitation lassen allerdings vermuten, dass die Art der Uhr sehr wohl Einfluss auf die Stärke der Gravitations-Rotverschiebung hat.
Um dies zu testen, wurden in dem vom Deutschen Zentrum für Luft-und Raumfahrt (DLR) finanzierten Projekt FOKUS am heutigen Donnerstag verschiedene Uhrentypen mit einer Höhenforschungsrakete TEXUS in den Weltraum geschickt. Dort herrschen beste Testbedingungen, denn das Gravitationspotenzial variiert hierbei besonders stark. So lässt sich prüfen, ob sich der Gang der Uhren tatsächlich unterscheidet – und schließlich auch, ob eine der neueren Gravitationstheorien eine genauere Beschreibung als Einstein liefert.
Die ersten Experimente im Weltraum wurden nun erfolgreich durchgeführt: Ein Team von Wissenschaftlern hat einen hochstabilen Quarzoszillator, der wie eine moderne Armbanduhr im Radiofrequenzbereich „tickt“, und ein komplettes Lasersystem zum Vergleich in den Weltraum geschossen. Herzstück des Lasersystems ist ein mikrointegriertes Halbleiterlasermodul, das am Berliner Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) entwickelt, gebaut und getestet wurde. An der Humboldt-Universität zu Berlin fand die Gesamtintegration des Lasersystems statt. Die Frequenz der Halbleiterlaser wird in einem von der Universität Hamburg entwickelten Modul auf einen atomaren Übergang des Rubidium-Atoms stabilisiert. Diese Rubidium-Atome liefern im Verbund mit den Lasern eine „optische Atomuhr“, die physikalisch nach einem anderen Prinzip als die Quarzuhr arbeitet und etwa zehn Millionen Mal schneller „tickt“ als diese. Für den Vergleich des Gangs der beiden Uhren wird ein von der projektleitenden Firma Menlo Systems entwickelter optischer Frequenzkamm eingesetzt.
Die Wissenschaftler demonstrierten mit den Tests erstmals, dass derartige „optische Atomuhren“ und die dafür benötigten Lasersysteme im Weltraum für Tests der Gravitations-Rotverschiebung und andere Präzisionsmessungen eingesetzt werden können. Mit der anspruchsvollen Technologiedemonstration haben sie auch die technologischen Grundlagen für Tests des Einstein‘schen Äquivalenzprinzips mit Kalium- und Rubidium-Atominterferometern im Rahmen des Projektes MAIUS gelegt. MAIUS ist Teil der DLR-geförderten QUANTUS-Mission, bei der neue quantenphysikalische Technologien entwickelt werden sollen, mit denen sich Atome kühlen, einfangen und manipulieren lassen. Auch die weitere Miniaturisierung der Lasermodule soll vorangetrieben und ein vollautomatisierter Quantensensor im All getestet werden. Langfristiges Ziel ist hier die Überprüfung des Einstein’schen Äquivalenzprinzips, nach dem alle Körper in einem Gravitationspotential „gleich schnell fallen“.
Kompakte und extrem robuste Diodenlasermodule aus dem FBH für den Weltraum
Unzählige Fallturmexperimente am Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen bereiteten das ausgeklügelte Experiment im Weltraum vor. Das Lasermodul wurde am Ferdinand-Braun-Institut im Rahmen des Joint Lab Laser Metrology mit der Arbeitsgruppe Optische Metrologie der HU Berlin realisiert. Das Joint Lab untersucht und entwickelt seit Längerem ultrapräzise und extrem kompakte Halbleiter-Lasermodule für den Einsatz im All. Deren Kernstück ist ein DFB (distributed feedback)-Laser, der Licht in einem sehr engen Frequenz- beziehungsweise Wellenlängenbereich abgibt. Diese spektrale Schmalbandigkeit ist eine der zentralen Anforderungen an das Lasermodul, das für die Spektroskopie der Rubidium-Atome und damit für Präzisionsmessungen benötigt wird. Mithilfe einer weltweit einmaligen, hybriden Mikrointegrationstechnologie wird der Diodenlaserchip zusammen mit elektronischen und optischen Komponenten zu einem überaus kompakten, raketentauglichen Aufbau integriert. Schließlich müssen die nur handtellergroßen Module auch unter den extrem rauen Bedingungen im Weltraum reibungslos funktionieren. Beim Raketenstart sind sie starken mechanischen Belastungen ausgesetzt, bei denen Beschleunigungen bis zum achtfachen der Erdbeschleunigung einwirken.
„Unsere Integrationstechnologie ermöglicht aber auch Belastungen bis zum 30-fachen der Erdbeschleunigung“, sieht sich Dr. Andreas Wicht, der die Arbeitsgruppe Lasermetrologie am FBH leitet, für künftige Anforderungen gut gerüstet. „Wir arbeiten zudem an spektral noch schmalbandigeren Lasern mit hybrid-integriertem optischen Verstärker, die sich für noch komplexere Experimente exzellent eignen.“ Damit baut das FBH zugleich sein Know-how im Bereich der optischen und spektroskopischen Präzisionsmessungen aus, die zu den präzisesten und genauesten Messverfahren unserer Zeit gehören und weitere Anwendungen eröffnet.
Quelle: Forschungsverbund Berlin e.V. (idw)