Lebenserwartung von Solarmodulen vorhersagen
Archivmeldung vom 02.10.2013
Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 02.10.2013 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.
Freigeschaltet durch Manuel SchmidtSolarmodule sind diversen Umwelteinflüssen ausgesetzt, die über die Jahre das Material ermüden. Forscher haben ein Verfahren entwickelt, mit dem sich die Wirkung dieser Einflüsse langfristig berechnen lässt. Dies erlaubt zuverlässige Lebensdauerprognosen.
Wer in eine eigene Solaranlage auf dem Dach investiert, möchte in der Regel langfristig davon profitieren – doch wie alt wird die Technik eigentlich? Obwohl die meisten Hersteller ihren Kunden bis zu 25 Jahre Garantie gewähren, können sie selbst keine verlässlichen Aussagen über die voraussichtliche Lebensdauer treffen. Um zum Betrieb zugelassen zu werden, müssen die Module zwar bestimmte Normen erfüllen. Dazu werden sie in verschiedenen Versuchen hohen Temperaturen oder starken mechanischen Belastungen ausgesetzt. »Die Ergebnisse sagen aber lediglich etwas über die Robustheit eines fabrikneuen Exemplars gegenüber kurzzeitigen extremen Belastungen aus. Für die tatsächliche Lebensdauer sind dagegen alterungsbedingte Effekte wie Materialermüdung relevant, die erst im Laufe der Zeit auftreten«, erklärt Alexander Fromm vom Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg.
Der Wissenschaftler arbeitet im Rahmen des vom BMU geförderten Projekts »Zuverlässigkeit von PV-Modulen II« an einem neuen Verfahren, das die Lebensdauer von Solarmodulen prognostiziert. »Bei unserem zweigleisigen Prinzip kombinieren wir reale Messdaten mit einer numerischen Simulation«, so Fromm. Dazu untersuchen die Freiburger zunächst im Feldtest, wie sich mechanische Belastungen auf die Anlage auswirken. Denn Schneelasten, Temperaturschwankungen und Windböen erzeugen in den Modulen mechanische Spannungen beziehungsweise Dehnungen. Das führt langfristig zu einer Materialermüdung. Anfällig sind das Einbettmaterial aus Kunststoff und insbesondere die Zellverbinder – das sind dünne Bändchen aus Kupfer, über die die Solarzellen miteinander verknüpft sind. »Das ist, als würden sie eine Büroklammer immer auf und ab biegen. Irgendwann bricht sie«, erklärt Fromm.
Schon leichter Wind bewirkt Schwingung im Modul
Um die Einflüsse auf das Material erfassen zu können, haben die Forscher ein komplettes Solarmodul mit Sensoren ausgestattet, die über Widerstandsänderungen Dehnungen an der Oberfläche von Bauteilen messen. Daraus wiederum lassen sich mechanische Spannungen im Material berechnen. Bei der Auswertung stellten Fromm und sein Team fest, dass schon leichter Wind ausreicht, um im Modul eine Schwingung zu erzeugen. Diese Schwingung ist ausgeprägter, je höher die Umgebungstemperatur ist. Darüber hinaus erhöht sich im Laufe der Zeit die Schwingungsfrequenz, da das Kunststoffmaterial durch UV-Strahlung steifer und spröder wird. »Die spannende Frage ist nun, wie sich diese Einflüsse langfristig auf die Lebensdauer der Komponenten auswirken. An dieser Stelle kommt unser Simulationstool ins Spiel«, so Fromm.
Dazu wird für das Solarmodul ein detailliertes 3D-Simulationsmodell erstellt. Auf Basis der Messergebnisse aus dem Feldtest lässt sich dann anhand von numerischen Berechnungen ableiten, wie umweltbedingte Einflüsse langfristig auf die Modulkomponenten wirken und welche mechanischen Spannungen im Material auftreten. »Wir haben anhand der Simulation beispielsweise herausgefunden, dass die UV-bedingte Versprödung eine weitaus größere Rolle bei der Materialermüdung spielt als bislang angenommen«, sagt Fromm. Um die Lebensdauer eines Moduls vorhersagen zu können, kombinieren die Forscher die Messwerte aus dem Feldversuch mit bekannten Festigkeits-Kennwerten der entsprechenden Materialien. Diese Zahlen sagen aus, ab welcher Belastung das Material voraussichtlich bricht oder sich ablöst.
Kein Massentest von der Stange
Das Verfahren ist ab sofort einsatzbereit. Um optimale und zuverlässige Prognosen zu erstellen, benötigen die Entwickler jedoch möglichst detaillierte Materialkenndaten und Informationen zur Geometrie des Moduls, das getestet werden soll. »Unser Verfahren bietet keinen Massentest von der Stange, sondern wird individuell auf den jeweiligen Kunden abgestimmt«, erklärt Fromm. Anhand ihrer Berechnungen können die Forscher dann nicht nur Aussagen zur voraussichtlichen Lebensdauer treffen. Es lassen sich auch Verbesserungspotenziale hinsichtlich Geometrie und Material aufzeigen oder die Auswirkungen von unterschiedlichen Materialien auf die mechanischen Spannungen im Modul vorhersagen.
Quelle: Fraunhofer-Gesellschaft (idw)